4. The table shows the cost for a clothing store to buy jeans and khakis. The total cost for Saturday’s shipment, $1,800, is represented by the equation $15x + 20y = 1,800$. Use the x- and y-intercepts to graph the equation. Then interpret the x- and y-intercepts. (Examples 2 and 3)

<table>
<thead>
<tr>
<th></th>
<th>Jeans</th>
<th>Khakis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per Pair ($)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Amount Shipped</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

The x-intercept of 120 means that if the store purchased only jeans, they would have 120 pairs of jeans. The y-intercept of 90 means that if the store purchased only khakis, they would have 90 pairs of khakis.

The total number of legs, 1,500, on four-legged and two-legged animals in a zoo can be represented by the equation $4x + 2y = 1,500$. Use the x- and y-intercepts to graph the equation. Then interpret the x- and y-intercepts. (Examples 2 and 3)

The x-intercept of 375 means that if the zoo had only four-legged animals, there would be 375 of them. The y-intercept of 750 means that if the zoo had only two-legged animals, there would be 750 of them.
6. **Multiple Representations** The table shows the group rate for admission tickets for adults and children to an amusement park.

 a. **Symbols** The total cost of a group’s tickets is $1,350. Write an equation to represent the number of adults’ and children’s tickets purchased.

 \[45x + 30y = 1350\]

 b. **Words** What are the \(x\)- and \(y\)-intercepts and what do they represent? **The \(x\)-intercept of 30 means that if only adults bought tickets, 30 tickets would be sold.**

 The \(y\)-intercept of 45 means that if only children’s tickets were purchased, 45 tickets would be purchased.

 c. **Graphs** Use the \(x\)- and \(y\)-intercepts to graph the equation. Use the graph to find the number of children’s tickets purchased if 20 adult tickets were purchased.

 15 children’s tickets

7. **Find the Error** Carmen is finding the \(x\)-intercept of the equation \(3x - 4y = 12\). Find her mistake and correct it.

 After \(3x = 12\), Carmen didn’t divide both sides by 3 to get the \(x\)-intercept of 4.

 \[
 \begin{align*}
 3x - 4y &= 12 \\
 3x - 4(0) &= 12 \\
 3x &= 12 \\
 x &= 12
 \end{align*}
 \]