6MAP Strand Algebraic Thinking:

Summative Assessment
Common Core Standards:
8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions.
8.EE.3: Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.
8.EE.4: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. Interpret scientific notation that has been generated by technology.

Calculations

Total

Unit 2 Part 1 Exponents
Summative Assessment Pre-Test & Study Guide
NO CALCULATOR

Simplify the following expressions. All answers must have positive exponents. (8.EE.1)

1. $5^{-8} \times 5^4$

2. $\frac{3^6}{3^3}$

3. $(2x^2)^{-3}$

4. $(n^7 \times n^2)^4$
Determine whether the following statements are true or not and explain in words how you know. (8.EE.1)

5. $\frac{2^4}{q} = (q^4)^2$

 $9^4 = 9^8$

 False exponents don't equal

6. $\frac{x^5}{y} = \frac{x^4}{y}$

 $r^2 = r - 2$

 False exponents don't equal

Solve the following expressions. All answers must have positive exponents. Show work. (8.EE.1)

7. $(3x^2y)^4 \cdot (4x^4)^3$

 $3^4 \cdot x^8 \cdot y^3 \cdot 12$

 $3^4 \cdot y^3 \cdot x^{20}$

8. $\frac{5x^4y^8}{20x^2y^2}$

 $\frac{1x^2y^6}{4}$

9. 5^0

 1
Solve for the missing variable. Show work - must be algebraic equations. (8.EE.1)

10. \((v^2)^6 = (v^4)^7\)

\[\sqrt[2]{12} = \sqrt[4]{4^x} \]

\[\frac{12}{9} \]

\[\frac{4}{3} \]

\[3 - x \]

11. \(\frac{x^5}{x^3} = \frac{1}{x} \)

\[3^4 \]

\[x^{5x} = x^{-4} \]

\[5x = -4 \]

\[5 - x = -4 \]

\[-x = -9 \]

\[x = -9 \]

Solve the following questions. (8.EE.3)

12. The company Google is worth approximately 7 \(\times\) \(10^9\) dollars. The company Smith Avenue Donut is worth approximately 3 \(\times\) \(10^5\) dollars. How many times bigger is Google’s worth than Smith Avenue Donut’s worth?

\[\frac{7 \times 10^9}{3 \times 10^5} \]

\[2.3 \]

\[10^{9-5} \]

13. The mass of Earth is about \(6 \times 10^{24}\) and the mass of Jupiter is about \(2 \times 10^{27}\). About how many times bigger is Jupiter than Earth?

\[\frac{2 \times 10^{27}}{6 \times 10^{24}} \]

\[3 \times 10^{27-24} \]

\[3.3 \times 10^2 \]

14. Francisco was converting the number 64,000,000,000 to scientific notation and got \(6.4 \times 10^8\). Is he correct? Explain your reasoning.

\[\text{False } \]

\[6.4 \times 10^9 \]

15. Ghaliya was converting the number \(7.1 \times 10^{-3}\) to decimal (standard form) and got 0.000071. Is she correct? Explain your reasoning.

\[\text{False } \]

\[7.1 \times 10^{-6} \]
MAP Strand Algebraic Thinking:

Summative Assessment
Common Core Standards:
8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions.

8.EE.3: Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.

8.EE.4: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. Interpret scientific notation that has been generated by technology.

Calculations

Total

Unit 2 Part 1 Exponents
Pre-Test & Study Guide
CALCULATOR ALLOWED

For questions 1-4, write the final answer in scientific notation. Show work. (8.EE.4)

1. \((7.4 \times 10^4) + (3.1 \times 10^3) = 7.71 \times 10^4\)

2. \((7.4 \times 10^4) - (3.1 \times 10^3) = 7.09 \times 10^4\)

3. \((7.4 \times 10^4) \times (3.1 \times 10^3) = 2.294 \times 10^8\)

4. \(\frac{7.4 \times 10^4}{3.1 \times 10^3} = 2.387096774 \times 10^1\)

\(2^c\)